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Abstract

The p-adic arithmetic allows error-free representation of fractions and error-free arithmetic
using fractions. In this tutorial, we describe infinite-precision p-adic arithmetic which is more
suitable for software implementations and finite-precision p-adic arithmetic which is more suit-
able for hardware implementations. The finite-precision p-adic representation is also called
Hensel code which has certain interesting properties and some open problems for research.

1 Introduction

A p-adic number α can be uniquely written in the form

α =
∞∑

j=n

ajp
j

where each of aj ∈ [0, p − 1] and the p-adic norm of the number α is defined as ‖ α ‖= p−n. Note
that the series

1 + p + p2 + p3 + · · ·
converges to 1

1−p in the p-adic norm. Now, as an example, consider the power series expansion

α = 2 + 3p + p2 + 3p3 + p4 + 3p5 + p6 + · · ·
= 2 + 3p(1 + p2 + p4 + · · ·) + p2(1 + p2 + p4 + · · ·)
= 2 + (3p + p2)(1 + p2 + p4 + · · ·)

Since 1 + p2 + p4 + · · · converges to (1 − p2)−1, we have

α = 2 +
3p + p2

1 − p2
.

Taking p = 5, we obtain 5-adic expansion of α = 1
3 , which can be written in the form

1
3

= .23131313131 · · · (p = 5)

= .231 (p = 5) .
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There is a one-to-one correspondence between the power series expansion

anpn + an+1p
n+1 + an+2p

n+2 + · · ·

and the short representation anan+1an+2 · · ·, where only the coefficients of the powers of p are
shown. We can use the p-adic point as a device for displaying the sign of n.

anan+1 · · · a−2a−1.a0a1a2 · · · for n < 0
.a0a1a2 · · · for n = 0
.00 · · · 0a0a1a2 · · · for n > 0

For example,

13.41 = 1 · 5−2 + 3 · 5−1 + 4 · 50 + 1 · 51 = 241/25
.1341 = 1 · 50 + 3 · 51 + 4 · 52 + 1 · 53 = 241
.01341 = 0 · 50 + 1 · 51 + 3 · 52 + 4 · 53 + 1 · 54 = 1205

2 Representation of Negative Numbers

If

α =
∞∑

i=n

aip
i

then

−α =
∞∑

i=n

bip
i

where bn = p − an and bi = (p − 1) − ai for i > n. Thus, for example,

1
3

= .2313131 · · ·

−1
3

= .3131313 · · ·

However, watch for leading zeros, they remain unchanged:

5
3

= .02313131 · · ·

−5
3

= .03131313 · · ·

3 Representation of Integers

Since a positive integer h can be expressed in exactly one way as the sum of powers of a prime p,
i.e.,

h = d0 + d1p + d2p
2 + · · · + dkp

k

with di ∈ [0, p − 1], there is essentially no difference between p-adic and p-ary representation of h.
The only difference is that the digits in the p-adic representation are written in reverse order. For
example,

199 = 4 · 50 + 4 · 51 + 2 · 52 + 1 · 53 = .4421 (5-adic)
199 = 1 · 53 + 2 · 52 + 4 · 51 + 4 · 50 = 1244. (5-ary)
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4 Representation of Rational Numbers

If α is a rational number, then it has a repeating pattern of ajs in its p-adic expansion, i.e., it is of
the form

α = anan+1 · · · a−1.b0b1 · · · bkc1c2 · · · cl

For example, 1/3 = .231, −1/3 = .31, and 2/3 = .413, etc. Let α have the p-adic expansion

α = anpn + an+1p
n+1 + an+2p

n+2 + · · ·
= pn(an + an+1p + an+2p

2 + · · ·)
= pn · c1

d1

where gcd(c1, d1) = 1 and p divides neither c1 nor d1. The p-adic expansion for c1/d1 is

c1

d1
= an + an+1p + an+2p

2 + · · ·

and thus

c1 · d−1
1 (mod p) = an + an+1p + an+2p

2 + · · · (mod p)
= an .

In other words, we compute an by

an = c1 · d−1
1 (mod p) .

Next, we use

c1

d1
− an = p(an+1 + an+2p + an+3p

2 + · · ·)

= p · c2

d2
,

where gcd(c2, d2) = 1 and p divides neither c2 nor d2. The p-adic expansion for c2/d2 is

c2

d2
= an+1 + an+2p + an+3p

2 + · · ·

and so
an+1 = c2 · d−1

2 (mod p) .

We continue this process until the period is exhibited. Let α = 2/15 and p = 5. Thus,

2
15

= 5−1 · 2
3

,

and n = −1. The 5-adic expansion of 2/15 is found as

a−1 = 2 · 3−1 (mod 5) = 4
2
3
− 4 = −10

3
= 5 · −2

3
a0 = −2 · 3−1 (mod 5) = 1
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−2
3

− 1 = −5
3

= 5 · −1
3

a1 = −1 · 3−1 (mod 5) = 3
−1
3

− 3 = −10
3

= 5 · −2
3

a2 = −2 · 3−1 (mod 5) = 1
−2
3

− 1 = −5
3

= 5 · −1
3

a3 = −1 · 3−1 (mod 5) = 3

which gives us 2/15 = 4.131313 · · · = 4.13.

5 Addition

Addition of p-adic numbers is similar to the addition of p-ary numbers. However, we add the digits
and propagate the carries from left to right. As an example, we compute 2/3+5/6 = 3/2 for p = 5.

2
3

= .413131313 · · ·
5
6

= .014040404 · · ·

The addition operation proceeds as follows:

.413131313 · · · = .413

.014040404 · · · = .0140

.422222222 · · · = .42

As a check, we convert .42 to rational

.42 = 4 + 2(5 + 52 + 53 + · · ·)
= 4 + 10(1 + 5 + 52 + 53 + · · ·)

= 4 + 10 · 1
1 − 5

=
3
2

.

6 Subtraction

We complement the subtrahend and add it to the minuend, i.e., α − β = α + (−β). Let α = 2/3
and β = 5/6, then

5
6

= .014040404 · · ·

−5
6

= .040404040 · · ·

Thus, we compute 2/3 − 5/6 = −1/6 as
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.413131313 · · · = .413

.040404040 · · · = .04

.404040404 · · · = .40

Now, we convert .40 to rational using

.40 = 4(1 + 52 + 54 + 56 + · · ·)

= 4 · 1
1 − 25

= −1
6

.

7 Multiplication

A p-adic number is called unit if it is not a multiple of a negative power of p and its first digit is
nonzero. For example, .413 and .42 are units while .0140 and 42.1231 are not. A non-unit p-adic
number α can always be written in the form α = γ · pn where γ is a unit. For example,

.0140 = .140 · 51

and
42.1231 = .421231 · 5−2 .

Let α = pnγ and β = pmθ, then αβ = pn+mγθ. We can thus restrict multiplication of any two
p-adic numbers to multiplication of units. The multiplication can then be carried similar to the
case of p-ary numbers. To multiply 2/3 and 5/6, we get the Hensel codes‘

2
3

= .413131313 · · ·
1
6

= .140404040 · · ·

The multiplication operation is illustrated below:

.4131313131313 · · ·
× .1404040404040 · · ·

4131313131313 · · ·
123131313131 · · ·
00000000000 · · ·
1231313131 · · ·
000000000 · · ·
12313131 · · ·
0000000 · · ·
123131 · · ·
00000 · · ·
1231 · · ·
000 · · ·
12 · · ·

+ 0 · · ·
.4201243201243 · · ·
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Thus, the result is 0.4201243 which is equal to

2
3
· 1
6

=
1
9

.

8 Division

Again, we will only consider the division of p-adic units. Consider the following p-adic units:

δ = d0 + d1p + d2p
2 + · · ·

β = b0 + b1p + b2p
2 + · · ·

with d0, b0 �= 0. The quotient α = δ/β can be written

α =
d0 + d1p + d2p

2 + · · ·
b0 + b1p + b2p2 + · · ·

= a0 + a1p + a2p
2 + · · ·

where a0, a1, a1, . . . are the digits of α. Since δ = β · α, we have

β · α = (b0 + b1p + b2p
2 + · · ·)(a0 + a1p + a2p

2 + · · ·)
= c0 + c1p + c2p

2 + · · ·

Even though the p-adic digits ai and bi lie in the interval [0, p − 1], we cannot assume that the
integers ci lie in this interval. Hence we write

c0 = b0a0 = d0 + t1p

where d0 ∈ [0, p − 1]. Then d0 is the first digit in the p-adic expansion for βα and t1 is the carry
which must be added to c1. Thus,

d0 = a0b0 (mod p)

which implies
a0 = d0b

−1
0 (mod p) .

This turns out to be the rule for obtaining each digit of the expansion for α. At each stage of
the standard long division procedure, we multiply b−1

0 (mod p) by the first digit of the partial
remainder and reduce the result modulo p.

As an example, we divide 2/3 by 1/12. We have

2
3

= .4131313 · · ·
1
12

= .3424242 · · ·

The first digit of the divisor is b0 = 3 and its multiplicative inverse modulo 5 is

b−1
0 (mod p) = 3−1 (mod 5)

= 2 .
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The first digit of the partial remainder (which, in the first step, is the dividend) is d0 = 4, which
gives

a0 = b−1
0 d0 (mod p)

= 2 · 4 (mod 5)
= 3 .

Thus, we obtain the first digit of the quotient. We then update the partial remainder by subtracting
3 times the divisor from it.

.3
.3424242 · · · .4131313 · · ·
.4333333 · · · .1111111 · · ·

.0342424 · · ·

To obtain the second digit, we multiply b−1
0 (mod p) by the first digit of the partial remainder

and reduce the result modulo p.

a1 = 2 · 3 (mod 5)
= 1 .

Thus, the second step of the division procedure gives us

.31
.3424242 · · · .0342424 · · ·
.0342424 · · · .0202020 · · ·

.0000000 · · ·

This procedure produced the partial remainder which is zero, hence we terminate the expansion.
In general, this will not happen and we will have to continue until the period is exhibited. As a
check we observe that 2/3 ÷ 1/12 = 8 and 8 = .31 for p = 5.

We note that the division of p-adic numbers is deterministic and not subject to trial and error
as is the case for division of p-ary numbers.

9 Finite-Segment p-adic Number System

In this finite number system each rational number in the set

SN = {α =
a

b
: |a| ∈ [0, N ], and |b| ∈ [1, N ]}

is assigned a unique code representation called its Hensel code. Arithmetic operations on pairs of
rational numbers in SN can be replaced by corresponding arithmetic operations on their Hensel
codes.

A Hensel code for a rational number α is simply a finite segment of its infinite-precision p-adic
expansion. We use the notation H(p, r, α) where p is a prime and r is the integer which specifies
the number of digits of the p-adic expansion which we retain for the Hensel code. For example,
since

2
3

= 0.4131313 · · · ,
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the Hensel code for α = 2/3 when p = 5 and r = 4 is

H(5, 4, 2/3) = .4131 .

A Farey sequence of order N is the ascending sequence of all reduced fractions in [0, 1] whose
denominators are not greater than N . For example, if N = 5, we have the Farey sequence

F5 =
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1

.

A simple rule for obtaining the Farey sequence of any order is illustrated below:

F1: 0
1

1
1

F2: 0
1

1
2

1
1

F3: 0
1

1
3

1
2

2
3

1
1

F4: 0
1

1
4

1
3

1
2

2
3

1
4

1
1

F5: 0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

1
4

4
5

1
1

where the nth row is constructed from the (n− 1)st row by including the fraction a+b
c+d between any

two fractions a
c and b

d whenever c + d ≤ n. Note that the set SN is the set of all order N Farey
fractions.

Theorem 1 Let p be a prime and let r be a positive integer. Define N to be the largest positive
integer which satisfies the inequality

N ≤
(

pr − 1
2

) 1
2

then every order N Farey fraction α can be represented uniquely by an r-digit ordered sequence (its
Hensel code), where each digit is an integer in the interval [0, p − 1].

For example, for p = 5 and r = 4, the value of N is found by computing

N ≤
(

54 − 1
2

) 1
2

,

which gives N = 17. Thus, if a/b belongs to F17, we have a unique Hensel code H(5, 4, a/b) for it.
We do not have compute infinite p-adic expansion of α in order to obtain r-digit Hensel code

of α. Suppose α = a
b where

a

b
= pn · c

d

with gcd(c, d) = gcd(c, p) = gcd(d, p) = 1. Let the Hensel code for c/d be

H(p, r, c/d) = .a0a1 · · · ar−1

then ar−1ar−2 · · · a1a0 is the radix p representation for the integer c · d−1 (mod pr), i.e.,

a0 + a1p + a2p
2 + · · · + ar−1p

r−1 = c · d−1 (mod pr) .

We consider the following three cases:
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Case I n = 0

First we compute the integer c · d−1 (mod pr) and then express this integer in radix p. The
Hensel code is then simply obtained by reversing the digits. For example, when α = 2/3,
p = 5, and r = 4, we have pr = 54 = 625, and

2
3

= 50 · 2
3

,

thus
2 · 3−1 = 2 · 417 = 209 (mod 625) .

Expressing the decimal 209 in radix 5, we obtain

209 = 1 · 53 + 3 · 52 + 1 · 51 + 4 · 50 = (1314)5 .

The Hensel code of 2/3 is found

H(5, 4, 2/3) = .4131

which agrees with the one found by truncating the infinite series expansion.

Case II n < 0

In this case α = p−m · c
d where m is a positive integer. To find H(p, r, α) we first find

H(p, r, c/d) using the procedure given in Case I and then shift the p-adic point m places to
the right. For example, let α = 2/15 with p = 5 and r = 4. We write α = 5−1 · 2

3 and compute
the Hensel code for 2/3 as .4131. The Hensel code for 2/15 is found by shifting the p-adic
point one place to the right to obtain

H(5, 4, 2/15) = 4.131

Case III n > 0

In this case α = pk · c
d where k is a positive integer. To find H(p, r, α) we compute H(p, r, c/d)

and then shift the p-adic point k places to the left. For example, the Hensel code α = 10/3 =
51 · 2

3 is found as
H(5, 4, 10/3) = .0413

Note that the rules for obtaining Hensel code for a negative number are the same. For example,
to obtain H(5, 4,−2/3) we compute 5-ary expansion of the integer −2 · 3−1 (mod 625) as

= −2 · 3−1 (mod 625)
= −2 · 417 (mod 625)
= 416
= (3131)5

which gives the Hensel code H(5, 4,−2/3) = .1313.
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10 Arithmetic using Hensel Codes

The rules of the arithmetic are similar to the infinite-precision case. However, notice that whenever
the result is outside the set FN , uniqueness and correctness are no longer assured. The table given
below enumerates all Hensel codes of the form H(5, 4, a/b) where a/b ∈ F17.

Table 1: Ordinary Hensel Codes H(5, 4, a/b)
a b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 .1000 .3222 .2313 .4333 1.000 .1404 .3302 .2414 .4201 3.222 .1332 .3424 .2034 .4101 2.313 .1234 .3043
2 .2000 .1000 .4131 .3222 2.000 .2313 .1214 .4333 .3012 1.000 .2120 .1404 .4014 .3302 4.131 .2414 .1132
3 .3000 .4222 .1000 .2111 3.000 .3222 .4021 .1303 .2313 4.222 .3403 .4333 .1143 .2013 1.000 .3104 .4121
4 .4000 .2000 .3313 .1000 4.000 .4131 .2423 .3222 .1124 2.000 .4240 .2313 .3123 .1214 3.313 .4333 .2210
5 .0100 .0322 .0231 .0433 .1000 .0140 .0330 .0241 .0420 .3222 .0133 .0342 .0203 .0410 .2313 .0123 .0304
6 .1100 .3000 .2000 .4222 1.100 .1000 .3142 .2111 .4131 3.000 .1411 .3222 .2232 .4021 2.000 .1303 .3342
7 .2100 .1322 .4313 .3111 2.100 .2404 .1000 .4030 .3432 1.322 .2204 .1202 .4212 .3222 4.313 .2042 .1431
8 .3100 .4000 .1231 .2000 3.100 .3313 .4302 .1000 .2243 4.000 .3041 .4131 .1341 .2423 1.231 .3222 .4420
9 .4100 .2322 .3000 .1433 4.100 .4222 .2214 .3414 .1000 2.322 .4324 .2111 .3321 .1134 3.000 .4402 .2024
10 .0200 .0100 .0413 .0322 .2000 .0231 .0121 .0433 .0301 .1000 .0212 .0140 .0401 .0330 .4131 .0241 .0113
11 .1200 .3322 .2231 .4111 1.200 .1140 .3423 .2303 .4012 3.322 .1000 .3020 .2430 .4431 2.231 .1421 .3102
12 .2200 .1100 .4000 .3000 2.200 .2000 .1330 .4222 .3313 1.100 .2332 .1000 .4410 .3142 4.000 .2111 .1240
13 .3200 .4322 .1413 .2433 3.200 .3404 .4142 .1241 .2124 4.322 .3120 .4424 .1000 .2343 1.413 .3340 .4234
14 .4200 .2100 .3231 .1322 4.200 .4313 .2000 .3111 .1420 2.100 .4403 .2404 .3034 .1000 3.231 .4030 .2323
15 .0300 .0422 .0100 .0211 .3000 .0322 .0402 .0130 .0231 .4222 .0340 .0433 .0114 .0201 .1000 .0310 .0412
16 .1300 .3100 .2413 .4000 1.300 .1231 .3214 .2000 .4432 3.100 .1133 .3313 .2143 .4302 2.413 .1000 .3401
17 .2300 .1422 .4231 .3433 2.300 .2140 .1121 .4414 .3243 1.422 .2411 .1342 .4123 .3013 4.231 .2234 .1000

Using this table, we now illustrate some of the properties of the finite segment p-adic number
systems:

• Let α = 2/3 and β = 3/4. The result is 2/3 + 3/4 = 17/12.

2
3

= .4131

3
4

= .2111

= .1342

which is found in the table, giving the correct result.

• Let α = 3/13 and β = 1/12. The result is 3/13 + 1/12 = 49/156.

3
13

= .1143

1
12

= .3424

= .4023

which is not in the table.

• Let α = 5/2 and β = 5/7. The result is 5/2 + 5/7 = 45/14.

5
2

= .0322

5
7

= .0330

= .0113

which is in the table, giving an incorrect result 10/17. Note that 10/17 = 0.588235 is far from
the correct result 45/14 = 3.21429 in the absolute norm. However, it is 5-adically close, i.e.,
their difference 10/17 − 45/14 = −625/238 is divisible by 54.
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Theorem 2 Let α = a/b and β = c/d, with gcd(b, p) = gcd(d, p) = 1. Then H(p, r, α) = H(p, r, β)
if and only if

a · b−1 = c · d−1 (mod pr) ,

or, in other words,
a · d = c · b (mod pr) .

Using the previous example α = 10/17 and β = 45/14, we see that

10 · 17−1 = 45 · 14−1 (mod 625) ,

i.e.,
10 · 14 = 45 · 17 (mod 625) .

11 Floating-Point Hensel Codes

Let α = a/b = pn · c
d with gcd(c, d) = gcd(c, p) = gcd(d, p) = 1, then the normalized floating-point

Hensel code of α is defined as the pair Ĥ(p, r, α) = (m, e) such that m = H(p, r, c/d) and e = n.
Here m is the mantissa and e is the exponent. For example,

Ĥ(5, 4, 2/3) = (.4131, 0)
Ĥ(5, 4,−2/3) = (.1313, 0)
Ĥ(5, 4, 2/15) = (.4131,−1)

Ĥ(5, 4,−2/15) = (.1313,−1)
Ĥ(5, 4, 10/3) = (.4131, 1)

Ĥ(5, 4,−10/3) = (.1313, 1) .

12 Arithmetic using Floating-Point Hensel Codes

Consider the following example: 2
3 + 1

5 = 13
15 . The Hensel codes are given as

Ĥ(5, 4, 2/3) = (.4131, 0)
Ĥ(5, 4, 1/5) = (.1000,−1)

First, we line up the p-adic points: (.1000,−1) = (1.000, 0) and then perform the addition

.4131
1.000
1.413

Hence, the sum is equal to (1.413, 0) = (.1413,−1) which is equal to 13/15.
Subtraction is performed by using “complemented addition” in the sense that the subtrahend

is complemented and added to the minuend. For example, to compute 2
3 − 1

5 = 7
15 using Hensel

codes, we need Ĥ(5, 4,−1/5) = (.4444,−1). We perform the operation

.4131
4.444
4.313

11



which gives (4.313, 0) = (.4313,−1), i.e., the Hensel code of 7/15.
For multiplication, consider the example: 1

3 · 6
5 = 2

5 .

Ĥ(5, 4, 1/3) = (.2313, 0)
Ĥ(5, 4, 6/5) = (.1100,−1)

The algorithm multiplies the mantissas

.2313

.1100

.2313
231

.2000

and adds the exponents: 0+ (−1) = −1. Thus, Ĥ(5, 4, α) = (.2000,−1) which is equal to 2/5 since
ordinary Hensel code of 2/5 is equal to 2.000.

13 Normalization of Floating-Point Hensel Codes

Consider the following operation 1/2 + 1/8 = 5/8 using floating-point Hensel codes, Ĥ(5, 4, 1/2) =
(.3222, 0) and Ĥ(5, 4, 1/8) = (.2414, 0).

.3222

.2414

.0241

The table indicates that this is indeed the ordinary Hensel code of 5/8. However, we need to
compute its floating-point Hensel code of the form (.xyyy, e) where x is nonzero. How can this be
achieved? The following method is proposed:

Gregory & Krishnamurty: Convert the unnormalized Hensel code to its order N Farey fraction
and then map this number to its normalized floating-point Hensel code. For example, the
table indicates that .0241 is equal to 5/8. We then compute (using the table) the Hensel code
of 1/8 as .2414 which means the floating-point Hensel code of 5 · 1

8 is equal to (.2414, 1).

Colagrossi & Miola: Soon to be investigated.

14 Research Directions

• Area and time complexity of the binary versus p-adic floating-point number systems.

• Efficient algorithms for conversion, magnitude detection, and normalization of Hensel codes.

• Detection of overflow and underflow.

• Applications of p-adic arithmetic in computational algebra and scientific computing.

More about p-adic arithmetic and Hensel codes can be found in the following books [1, 4, 6] and
the papers [8, 5, 3, 10, 11, 7, 12, 13, 9, 2].
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